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Abstract—By matching a large database of individual macroforecaster data
with the universe of sizable natural disasters across 54 countries, we iden-
tify a set of new stylized facts: forecasters are persistently heterogeneous
in how often they issue or revise a forecast; information rigidity declines
significantly following large, unexpected natural disaster shocks; and dis-
agreement decreases among inattentive agents while it might increase for
attentive ones. We develop a learning model that captures the two channels
through which natural disaster shocks affect expectation formation: atten-
tion effect—the visibly large shocks induce immediate and synchronized
updating of information for inattentive agents—and uncertainty effect—
attentive agents might increase their acquisition of private information to
compensate for the higher uncertainty after shocks.

I. Introduction

FORECASTS of macroeconomic variables drive govern-
ment policy as well as corporate investment decisions.

The micro-foundations of expectation formation are key to
understanding the dynamics of these forecasts. Indeed, Man-
ski (2018) concludes, “I urge measurement and analysis of
the revisions to expectations that agents make following oc-
currence of unanticipated shocks.” This paper seeks to ana-
lyze forecaster responses to such shocks by matching a large
database of individual macroforecaster data with the universe
of natural disasters across 54 countries. We find that profes-
sional forecasters respond to the large, unexpected shocks
in consistently different ways, depending on how often they
issue or revise a forecast. As a result, the overall forecast
accuracy and dispersion show interesting dynamics that has
not been explored in the literature. We build a theory of in-
formation updating aimed at matching the stylized facts of
expectations formation of professional forecasters.

Our theory has three key elements. First, agents are not
interchangeable: attentive agents have a larger benefit from
forecast accuracy and revise forecasts frequently; inatten-
tive agents who do not benefit much from the accuracy of
their forecasts make revisions infrequently and nonsystemat-
ically. Second, large and unexpected shocks induce inatten-
tive agents to update to a greater degree, since the cost of not
updating information is very high. Third, large shocks also
induce attentive agents to purchase more private information.
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Our theory tells the following story about expectations for-
mation following attention grabbing and unexpected shocks.
First, visibly large shocks induce an immediate increase in up-
dating of information for more inattentive agents (extensive
margin). This attention effect is particularly pronounced for
those with an outdated information set, resulting in a signifi-
cant decline in their information rigidity. Second, for attentive
agents, the occurrence of those shocks can generate increased
uncertainty among them. To compensate for this higher un-
certainty, some attentive agents increase their acquisition of
private information (intensive margin). This acquisition is
worthwhile if the benefit of doing so—the reduction of the
mean squared error—is larger than the cost that resulted from
buying additional pieces of private information.1

The ingredients of our theory are motivated by our empir-
ical findings. Our primary database of macroeconomic fore-
casts comes from Consensus Economics and covers a range
of macro-variables across 54 countries. We focus on profes-
sional forecaster data primarily because such forecasters have
a comparative advantage in allocating resources to acquire,
absorb, and process information in forming expectations. As
such, the degree of information rigidity found in professional
forecasters likely forms a lower bound for other economic
agents. Furthermore, the expectations of professional fore-
casters directly affect those of households (Carroll, 2003)
and are used as inputs to the decisions of the representative
agent (Ilut & Schneider, 2014).

Moreover, we focus on a survey that gives a significant
amount of discretion to forecasters. That is, forecasters can
choose to not report or not update their forecasts in any
given month, and a significant number of forecasters exer-
cise this capability. We find that forecasters are persistently
heterogeneous in how often they issue or revise a forecast,
with attentive agents submitting or revising forecasts every
month, while inattentive agents provide and revise forecasts
infrequently. The inattention channel that we study would be
muted in surveys that require forecasters to report or update
their forecasts for each period.

Another key element of our empirical analysis is the se-
lection and identification of large, unexpected shocks. Our
natural disaster data come from the Center for Research on
the Epidemiology of Disasters and contain over 15,000 nat-
ural disasters. We limit our attention to unpredictable dis-
asters like tornadoes, earthquakes, and storms rather than
slower-moving disasters such as heat waves or epidemics. We

1Our results are largely consistent with the work by Giacomini et al.
(2017), who also explore the role of attention in forecast updating and
forecast accuracy in both a theoretical and empirical setting in Brazil. They
find that scarce attention is an important driver of forecaster behavior and
that time-varying incentives on the part of the forecaster can greatly affect
attention paid.
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further limit our focus to significant disasters as measured by
the number of people affected or killed and the monetary
damages caused.2

To address the concerns that the disaster shocks are not
fully unexpected and to better measure their impact, we con-
struct a news-based measure of coverage of the disaster across
several thousand English-language newspapers from the Ac-
cess World News database. Using an index of the relative
change in newspaper coverage regarding the disaster, we can
flexibly identify disasters that have a relatively large impact
and are unexpected. The large, unanticipated shocks identi-
fied in our paper are different from the so-called man-bites-
dog signals in Nimark (2014), where observing those sig-
nals would change the probability distribution of the under-
lying variable. By contrast, the occurrence of those shocks
increases all agents’ uncertainty and induces synchronized
information updating for most agents, but does not substan-
tially change the underlying data-generating process in our
framework.

By carefully matching the forecaster data with these nat-
ural disasters, we find that a large and unexpected shock
induces a synchronized response and information updating
among professional forecasters. Following those shocks, the
overall dispersion among forecasters declines and forecast
accuracy increases. These results may at first appear coun-
terintuitive but are in fact a natural consequence of the un-
expected shocks: disasters induce more inattentive agents to
update, but also cause attentive agents to purchase more pri-
vate information and be more attentive.

Our paper is closely related to the theoretical literature on
expectations formation with information frictions. Notable
examples include the sticky information model of Mankiw
and Reis (2002) and Reis (2006); the noisy information
model of Sims (2003), Woodford (2003), and Maćkowiak
and Wiederholt (2009); the hybrid sticky-noisy information
model of Andrade and Le Bihan (2013) and Andrade et al.
(2016); and the Bayesian learning model of Lahiri and Sheng
(2008) and Giacomini, Skreta, and Turen (2020).

In contrast to these papers, agents in our model are
persistently heterogeneous in their type—attentive and
inattentive—as seen in the data. In contrast to all previous
work, we explicitly model agents’ behavior following large,
unexpected shocks. Our model also generalizes the noisy in-
formation model in two dimensions by allowing for (a) het-
erogeneous precision of private signals such that agents put
different weights on private signals (relative to the same pub-
lic information) and (b) time-varying precision of public sig-
nals in order to capture the increased uncertainty among eco-
nomic agents following a shock. These features of the model
enable us to measure state-dependent information rigidity in
a multivariate context.

2Without this limitation, nearly every country is hit by at least one small
natural disaster in nearly every period of our sample, muting any identifying
variation.

Our empirical result that the degree of information rigid-
ity significantly changes after the occurrence of large shocks
adds to the literature relying on survey expectations to evalu-
ate models with information frictions. Recent contributions,
among many others, include Carroll (2003), Mankiw, Reis,
and Wolfers (2004), Branch (2007), Coibion (2010), and
Coibion and Gorodnichenko (2015). The findings from all
of these papers firmly establish the presence of information
rigidities in the expectations formation process. However,
most papers treat the degree of inattention as a structural pa-
rameter, whereas we find that the visibly large shocks induce
immediate and synchronized updating of information. This
result supports state dependence in the information updat-
ing process as in Gorodnichenko (2008) and Maćkowiak and
Wiederholt (2009).

Furthermore, all of these papers predict that following large
shocks, disagreement among professional forecasters either
increases or does not change significantly. However, using
forecasts for a variety of macroeconomic variables across
many countries, we document that disagreement can de-
crease following large shocks that affect forecaster attention.
Our model is successful in explaining this apparent anomaly,
while also matching other key features of the expectations
formation process.

Finally, our paper makes contact with the literature on rare
disasters.3 While the disasters used as shocks in our paper
share some similarities to those in this literature, we turn our
focus toward the effects on expectations formation rather than
to any real economic effects.

The paper proceeds as follows. Section II describes the
data used in this paper. We establish a set of new stylized
facts about expectations formation following large, unex-
pected shocks in section III. We introduce the information
structure that agents face in section IV. We propose a theory
of expectation updating and illustrate the model implications
through simulations in section V. Section VI concludes. Ad-
ditional estimation and simulation results are relegated to the
online appendix.

II. Data

A. Consensus Economics Forecast Data

Our database of macroeconomic forecasts comes from
Consensus Economics. We use aggregated data from 1989 to
2014 covering 54 countries for which we can obtain both fore-
casts and true macroeconomic data.4 Consensus Economics

3For example, Cavallo, Cavallo, and Rigobon (2014) investigate the im-
pact of two earthquakes in Chile and Japan on prices and supply disruptions.
Orlik and Veldkamp (2014) posit that the realizations of disasters make eco-
nomic agents more uncertain. Maćkowiak and Wiederholt (2015) develop
a model in which agents make state-contingent plans in a rare event subject
to information constraint. Baker, Bloom, and Terry (2017) study the effect
of uncertainty on economic growth by using disasters of various types as
natural experiments.

4The countries are Argentina, Australia, Austria, Belgium, Brazil,
Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Denmark,
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solicits the individual forecasts from professional forecast-
ers: banks and financial firms, leading industrial companies,
consulting firms, think tanks, and research groups. We ob-
serve the mean and standard deviation of individual forecasts
for GDP and inflation in the current and the next calendar
year. For these variables, panelists are asked about calendar-
year predictions rather than a rolling period of twelve months.
Consequently, forecasts mechanically become more accurate
as forecasting horizon gets shorter. That is, forecasts for 2014
GDP will be significantly more accurate when solicited in De-
cember 2014 than in January 2014. Because of this feature, it
is important to control for within-year variation in the timing
of the surveys.

In addition to these aggregated data, we use individual
forecast data for the G7 countries: Canada, France, Germany,
Italy, Japan, the United Kingdom, and the United States. The
individual forecast data cover 1989 to 2014 and include fore-
casts for GDP, personal consumption, business investment,
corporate profits, industrial production, producer prices, con-
sumer prices, wages, car sales, housing starts, unemployment,
current account balance, short- and long-term interest rates,
and federal budget balances. Not all variables are covered for
all countries, though forecasts for common variables such
as GDP, inflation, and investment are well represented for
the entire G7. There are 296 unique panelists across these
countries, of which 225 have submitted at least 25 individual
monthly forecasts to the survey.

Individual panelists are not required to submit a forecast
each month and can choose the variables and countries to
which they would like to respond. Additionally, panelists can
submit an identical forecast from one month to the next. These
features of this set of forecaster data are common across
other widely used sources of forecaster data like Bloomberg
forecasts and the Philadelphia Fed Survey of Professional
Forecasters.

B. Disaster Data

Our natural disaster data have been obtained from the Cen-
ter for Research on the Epidemiology of Disasters (CRED).
These data contain over 15,000 extreme weather events such
as droughts, earthquakes, epidemics, floods, extreme tem-
peratures, insect infestations, avalanches, landslides, storms,
volcanoes, fires, and hurricanes from 1960 to 2014. For each
disaster, we can observe the event’s category, its date and
location, the number of deaths, the total number of people
affected by the event, and the estimated monetary cost of the
event. The CRED data include industrial and transportation
accidents, which we exclude in our analysis.

Estonia, Finland, France, Germany, Greece, Hong Kong, Hungary, India,
Indonesia, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, Malaysia,
Mexico, Netherlands, New Zealand, Norway, Pakistan, Peru, Philippines,
Poland, Portugal, Romania, Russia, Singapore, Slovak Republic, Slove-
nia, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey,
United Kingdom, United States, Ukraine, and Venezuela.

For each country-month period, we give a value of 1 if a
disaster has occurred and a 0 otherwise. This means that if a
country has, for example, three earthquakes in one month, it
receives a value of 1. The reason for this approach is to avoid
double counting recurring but linked events within a month
such as an earthquake with multiple aftershocks.

Because of the large number of disasters covered in the
data, we need to apply a filter to focus only on major events.
With this aim, we include a shock only if it fulfills at least
one of the following conditions: (a) more than 0.00001% of a
country’s population dead (e.g., more than thirty dead in the
United States); (b) more than $10 million in damages, and
(c) more than 50,000 people affected (e.g., made homeless,
injured, substantial financial losses). Our results are robust
to modification of filters for all three characteristics or by
utilizing both relative and absolute filters. Below we discuss
a weighting system to place higher weight on larger and more
unexpected disasters.

Finally, we adjust the date of a disaster if it takes place
after the Consensus Economics survey date in a given month.
That is, if the June Consensus Economics forecast has already
taken place, we attribute any further disasters in June to the
month of July in terms of the first forecast that they could
potentially affect.

C. Newspaper Data

Two potential concerns are that the disaster shocks that we
use are not fully unexpected or unnoticed by a forecaster. In
order to help alleviate these potential problems, we turn to
a measure of unexpectedness and impact derived from news
article mentions.

Using a database of newspapers from Access World News,
we construct an index that measures the amount of news about
a given country in the days surrounding each event.5 For each
individual disaster, we search the newspaper archive for arti-
cles that mention the country where the disaster took place.
For each of the fifteen days leading up to the disaster and fif-
teen days following it, we measure this count of articles and
take the ratio of the postdisaster article count to the predis-
aster article count. Figure 1 shows an average of this series
where each event’s coverage has been normalized to 1 in the
fifteen days prior to the event. A value of 2 at time 0 means
that there are, on average, twice as many articles written that
contain that country’s name on that day relative to the pre-
disaster average.

This process allows us to measure the change in attention,
or at least newspaper attention, paid to a country following
a disaster. This will enable us to flexibly distinguish be-
tween disasters that are relatively unimportant from those that
are more newsworthy. Moreover, it will help us to filter out

5Access World News contains over 3,000 newspapers worldwide. We
focus on newspapers from the United States, as they make up the majority
of coverage in this database. For U.S. disasters, we look for changes in
articles written that mention the state that the disaster occurs in rather than
the country.



290 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 1.—CHANGES IN NEWSPAPER ARTICLES REGARDING AFFECTED COUNTRIES

Data obtained by searching approximately 2,500 English-language newspapers on Access World News. For each natural disaster, daily article counts of the number of articles written that contain the name of the
affected country. This is averaged over all natural disasters studied in the regression analysis. For graphing purposes, the series for each event is normalized such that the preperiod has a mean of 1.

expected disasters that may have already been incorporated
into previous forecasts. That is, if we observe a similar num-
ber of articles regarding the country before and after the event
date, we can assume that the event was predicted ahead or it
was not that important.

Our primary news-based scaling measure is the percentage
increase in newspaper articles mentioning a given country in
the five days after the event relative to the five days prior
to the event. We use a relatively narrow window in order
to minimize concerns about longer-term trends in coverage
about various countries, but our results are robust to using
up to fifteen-day windows. When using the news-weighted
shocks, we turn to the shock with the highest jump in media
citations for that category in that month.6

Table A1 displays some basic summary statistics regard-
ing the indexes used to weight the disasters in our sample.
We include two different scalings of the disaster index. The
first is news scaling. The combined scaling refers to a com-
bined z-score comprising of the news scaling, the monetary
damages caused by the disaster, and the number of deaths
caused by the disaster (mean of 1 and maximum of 4.5). The
scaled disaster indexes are normalized to the same mean as
the overall disaster index.

6For example, one such included disaster is Cyclone Xynthia, which hit
France and other locations in Continental Europe on February 27, 2010.
It caused over $4 billion in damages, killed approximately fifty people,
left over 1 million homes without power, and halted train and air traffic.
Looking at newspaper coverage surrounding this event, we see a jump in
articles after the storm hit of 53% relative to the period of five days before
the storm.

Despite the filtering that we employ, most of the disasters
in our data are not large enough to significantly affect the
economies of the countries that we observe, especially when
considering the offsetting stimulative aid or spending that fol-
lows a destructive event. That is, we do not see these natural
disaster shocks as equivalent to large macroeconomic shocks
(e.g., oil price shocks, changes in monetary policy, new trade
deals or government spending initiatives) that would change
the direction of a national economy. The primary impact on
forecasters may be an increase in attention paid to a given
country and its economy, with predicted growth remaining
relatively stable. For larger macroeconomic shocks, uncer-
tainty about future impacts on macrovariables may be signif-
icant enough to outweigh any decrease in forecast dispersion
due to changes in attention among forecasters.

III. Empirical Results

A. State-Dependent Informational Rigidities

We first test for the presence of information rigidities in
our sample of macroeconomic forecast data across G7 coun-
tries. Our specification takes the form noted in Coibion and
Gorodnichenko (2015), utilizing data on the average forecasts
across all individual forecasters in a given country-month,
that is,

ForecastErrori,t = β1ForecastRevisioni,t + Timet

+ Countryi + εit , (1)
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TABLE 1.—STATE-DEPENDENT INFORMATIONAL RIGIDITIES (GDP)

(1) (2) (3) (4)
Variables Forecast Error Forecast Error Forecast Error Forecast Error

Forecast Revision 0.514*** 0.555*** 0.530*** 0.541***

(0.0784) (0.0822) (0.0810) (0.0822)
Forecast Rev × Disaster −0.286***

(0.104)
Disaster −0.0339

(0.0418)
Forecast Rev × Disaster (News Scaling) −0.106***

(0.0383)
Disaster (News Scaling) −0.0304

(0.0207)
Forecast Rev × Disaster (Combined Scaling) −0.183***

(0.0668)
Disaster (Combined Scaling) −0.0617*

(0.0319)
Observations 11,408 11,408 11,408 11,408
R2 0.295 0.296 0.296 0.296
Number of groups 54 54 54 54
Time FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes

Standard errors in parentheses: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. Regressions performed for GDP forecasts across 54 countries. Forecast Error denotes the difference of the ex post true GDP growth value
from the mean forecast. “Forecast Revision” denotes the difference of the mean GDP forecast from the previous month’s mean GDP forecast. “Disaster” is an indicator variable for a disaster occurring in a particular
country-month for over 1,000 natural disasters in the sample. “News Scaling” refers to the ratio of news articles written about a country in the five days following a disaster to those written in the five days before a
disaster (has a mean of 1 and a max value of 6). “Combined Scaling” for disasters refers to a combined z-score comprising the news scaling, the monetary damages caused by the disaster, and the number of deaths
caused by the disaster (mean of 1 and maximum of 4.5). Standard errors are Driscoll-Kraay robust errors.

where ForecastErrori,t =ActualValuei,t −MeanForecasti,t and
ForecastRevisioni,t =MeanForecasti,t −MeanForecasti,t−1.

In the presence of information rigidities, β1 would be pre-
dicted to be positive. That is, forecasters update periodically
over time, and thus the mean forecast converges only slowly
to the full-information forecast, driving a positive relation-
ship between forecast revisions and the forecast error of any
given period relative to the truth. To be as conservative as
possible, we use Driscoll-Kraay standard errors throughout
the empirical results.

In table 1, we restrict our analysis to forecasts of next-year
GDP. In the first column, we find that the change in mean
forecasts from month to month is strongly and positively re-
lated to the forecast error (table A1 displays summary statis-
tics for forecast errors and forecast revisions). We interpret
this as strong evidence for the presence of information rigidi-
ties in macroeconomic forecasting and that updating of fore-
casts is predictably less than complete in any given month.
That is, because not all forecasters update in each period, the
movement of the mean forecast goes only partway to the full-
information forecast that is likely closer to the ex post true
value for the period.

Columns 2 to 4 mirror this specification but add in interac-
tions of ForecastRevisioni,t with indicators for disasters and
with disasters that are scaled by two different metrics. We
find strong, negative coefficients on the interaction terms,
demonstrating that in the month following a natural disaster,
the correlation between forecast revisions and forecast errors
weakens substantially. Column 2 uses a simple indicator for
whether there was a natural disaster in country i in month t .
In the month of a natural disaster, the strength of the relation-
ship between forecast revisions and forecast errors falls by
approximately 50% (−0.286/0.555).

Column 3 scales the disaster by the size of the increase
in newspaper coverage surrounding the disaster. Here we see
that not only do natural disasters tend to affect these informa-
tional rigidities, but they do so in a way related to the size or
newsworthiness of the disaster. Given the maximum disaster
“news scaling” is approximately 6, these coefficients indicate
that a sufficiently large disaster reduces the relationship be-
tween forecast errors and forecast revisions to approximately
0. In contrast, a small disaster may not affect the relationship
to any large degree, consistent with the idea that if a disaster
does not merit mention in a newspaper, forecasters will likely
be unaware as well.

Column 4 uses a scaling based on three factors: the number
of deaths caused by a disaster, the monetary cost of the disas-
ter, and the jump in news coverage. Each series is normalized
to a standard deviation of 1, and then an average across all
three metrics is taken. Both of the disaster scalings in columns
3 and 4 have an overall mean and standard deviation of 1 for
nonzero values. Similar to our finding with only the news-
based scaling, we again find that in general, more signifi-
cant disasters drive down the relationship between forecast
revisions and forecast errors. This result is consistent with
the idea that professional forecasters may pay more atten-
tion to larger disasters and, as a result, update forecasts more
frequently.7

Table 2 mirrors the earlier approach but demonstrates the
correlation between forecast revisions and lagged forecast re-
visions, as in Nordhaus (1987). An advantage of Nordhaus’s
test is that it is completely independent of the “true” values of
the macroeconomic variables in question. Our findings follow

7These results are robust to the exclusion of any single type of natural
disasters (e.g., excluding earthquakes or excluding hurricanes).
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TABLE 2.—FORECAST REVISION LAGS (GDP)

(1) (2) (3) (4)
Variables Forecast Rev Forecast Rev Forecast Rev Forecast Rev

Lagged Forecast Revision 0.139*** 0.149*** 0.145*** 0.148***

(0.0358) (0.0372) (0.0362) (0.0371)
Lag Forecast Rev × Disaster −0.0736**

(0.0296)
Lagged Disaster 0.00223

(0.00976)
Lag Forecast Rev × Disaster (News Scaling) −0.0428***

(0.0143)
Lagged Disaster (News Scaling) −0.00943*

(0.00557)
Lag Forecast Rev × Disaster (Combined Scaling) −0.0604**

(0.0268)
Lagged Disaster (Combined Scaling) −0.00893

(0.00744)
Observations 11,444 11,444 11,444 11,444
R2 0.106 0.107 0.107 0.107
Number of groups 54 54 54 54
Time FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes

Standard errors in parentheses: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. Regressions performed for forecasts across 54 countries (including only forecasts of GDP). “Forecast Revision” denotes the difference of
the mean forecast from the previous month’s mean forecast. “Disaster” is an indicator variable for a disaster occurring in a particular country-month for over 1,000 natural disasters in the sample. “News Scaling”
refers to the ratio of news articles written about a country in the five days following a disaster to those written in the five days before a disaster (has a mean of 1 and a maximum value of 6). “Combined Scaling” for
disasters refers to a combined z-score comprising the news scaling, the monetary damages caused by the disaster, and the number of deaths caused by the disaster (mean of 1 and maximum of 4.5). Standard errors are
Driscoll-Kraay robust errors.

a similar pattern to our earlier results. We find that forecast
revisions in the current month tend to consistently and posi-
tively predict those in the following month. This relationship
diminishes substantially following a natural disaster, and the
relationship between forecast revisions and lagged forecast
revisions becomes increasingly weak as the disaster becomes
larger. This again suggests that a large and unexpected shock
precipitates a state-dependent response and an increase in
information updating.

In both tables, we see that larger disasters can drive sub-
stantially larger responses by forecasters than smaller disas-
ters. This is repeated throughout our results for both average
and individual forecaster effects. Note that the largest of the
disasters are several times larger than the median disaster,
so even modest effects that can be observed by interacting
simply with a disaster indicator are significantly magnified
for many of the more notable and newsworthy disasters and
events.

Tables A2 and A3 follow tables 1 and 2, but include fore-
cast data across all variables in the sample (e.g., GDP, CPI,
long- and short-run interest rates, unemployment, and con-
sumption) and include forecast variable fixed effects. We find
qualitatively similar results across all forecast variables as
when restricting the analysis to GDP: all variables exhibit
significant information rigidity that declines following large
natural disasters.

B. Heterogeneous Individual Forecasters

Consensus Economics forecasts are also useful in that un-
derlying forecast data from individual forecasters are avail-
able. Not only can we observe how the overall mean forecast

for a given country variable changes over time, but also how
individual forecasters respond. Differences in the frequency
and timing of forecast updates among individual forecast-
ers can have significant impacts for the aggregate accuracy
and dispersion of aggregate forecasts. With the individual
forecaster data, we investigate the extent to which persis-
tent heterogeneity among forecasters drives some of these
differences.

We split forecasters into two groups. The “attentive” group
is made up of forecasters who report a forecast for a given
country variable in more than 95% of the months that they
are present in the sample. The “inattentive” group is made
up of forecasters who report forecasts less frequently (on
average, reporting forecasts for 70% of months in the sam-
ple, with a minimum around 25%). This corresponds with
approximately the top quintile and bottom four quintiles of
forecaster reporting.8

Table 3 demonstrates some of the persistent differences
across these two groups, controlling for time, country, and
variable fixed effects. In columns 1 and 2, “Attentive Fore-
caster” is a binary indicator for being in the top quintile or
bottom four quintiles of this measure of forecaster attentive-
ness. We measure how forecasters in these two groups are
different from one another in two areas: absolute forecast er-
ror and absolute differences from the mean forecast. In both
cases, we find that the more attentive forecasters have fewer
persistent errors and deviations from the average forecast.
Some of these errors are derived from more accurate updates

8We have performed similar exercises by measuring attentiveness as the
fraction of forecasts that are different than the previous forecast for a given
forecaster (e.g., Andrade & Le Bihan, 2013) and found qualitatively similar
results.
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TABLE 3.—INDIVIDUAL FORECAST DISPERSION

(1) (2) (3) (4)
Variables Difference from Mean Forecast Error Difference from Mean Forecast Error

Attentive Forecaster −0.0724*** −0.363***

(0.0135) (0.107)
Fraction Forecasts Reported −0.177*** −0.779**

(0.054) (0.326)
Observations 292,391 156,718 292,391 156,718
R2 0.054 0.120 0.054 0.120
Time FE Yes Yes Yes Yes
VAR FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Forecaster FE Yes Yes Yes Yes

Standard errors in parentheses: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. “Forecast Error” denotes the absolute value of the difference of the individual forecast from the ex post true value. “Difference from Mean”
means the absolute value of the difference between the individual forecast and the mean forecast for that country-variable-month. “Attentive Forecaster” is an indicator variable that notes that a forecaster is in the top
quartile of fraction of forecasts reported. Data cover 280 forecasters and seven countries for GDP, CPI, consumption, short- and long-run interest rates, unemployment, wages, and producer prices. Standard errors are
Driscoll-Kraay robust errors.

in forecasts, but they also stem from inattentive forecasters
who fail to update for a given month and report outdated
forecasts more often.

Columns 3 and 4 of table 3 dispense with the binary indi-
cator of attentiveness and simply use the average fraction of
total forecasts reported for a given forecaster while they were
participating in the Consensus Economics panel. Again, we
see that forecasters who submit more forecasts tend to have
lower forecast errors relative to the truth and also smaller
deviations from the mean forecast for any given country-
variable-month.

A concern is that forecasters may shift between being atten-
tive and inattentive over time. We find this type of switching
to be uncommon. The top panel of figure 2 plots the fraction
of forecasts reported against the fraction of forecasts reported
in the previous year across all forecasters. We find a high de-
gree of persistence in the reporting frequency across years,
with inattentive forecasters likely to remain so over time, and
the reverse is true for attentive forecasters. This may be driven
by institutional features of the forecasters’ firm, where they
may be assigned to update forecasts only infrequently and so
do not respond to the Consensus Economics requests until a
new forecast is made by the firm. The bottom panel of figure
2 plots the fraction of forecasts that are changed from month
to month for a given forecaster rather than the fraction of
forecasts reported.

C. Individual Forecaster Updating

In tables 1 and 2, we found that information rigidity, as
measured through mean forecast revisions, changed signifi-
cantly in response to natural disasters. Table 4 uses the indi-
vidual forecaster data to examine the channels through which
this reduction in information rigidity takes effect. In columns
1 and 2, we test the effect that natural disasters have on the
individual likelihood of changing a forecast from the pre-
vious month. We include time, variable, country, and fore-
caster fixed effects to isolate the within-forecaster and within-
variable impacts of these natural disasters. We find a positive
impact (albeit insignificant, looking only at a natural disaster

indicator): natural disasters tend to increase the probability
of changing an individual forecast by approximately 0.86
percentage points (on a mean likelihood of changing of ap-
proximately 50%). Column 2 demonstrates that this effect is
larger for more newsworthy disasters, with disasters in the
top decile driving an approximate 2.13 percentage point in-
crease in the likelihood of a forecaster revising their previous
month’s forecast (reflecting a scaled value for the top decile
of disasters of approximately 3.5).9

Columns 3 and 4 repeat this exercise but interacting with
a measure of attention among forecasters. In both cases, we
find that attentive forecasters are much less likely to update
their forecasts in response to disasters. Inattentive forecasters
tend to drive all of the combined effect, changing forecasts
following disasters and especially following large disasters.

Table 5 demonstrates the counterintuitive result that disas-
ters can actually decrease the dispersion, as measured by the
squared distance from the mean forecast in a given month,
among some groups of professional forecasts due to the ef-
fect that disasters have on inattentive forecasters. In columns
1 and 2, we see that following a disaster, attentive forecasters
see moderate increases in forecaster dispersion (i.e., measur-
ing the combined effect for quintile 5 of the disaster effect
and the interaction effect). However, inattentive forecasters
see a decline in this measure of dispersion, as they tend to
update their forecasts after a natural disaster. In fact, the less
attentive a forecaster is, the more his or her distance from the
mean forecast decreases following a disaster.

Columns 3 and 4 repeat this exercise but instead mea-
sure the impact of disasters across attentive quintiles on the
squared distance from the true ex post value of a given fore-
cast variable. Again, we find a slightly positive impact of nat-
ural disasters on forecast errors for attentive forecasters, while
there are negative effects for the most inattentive forecasters.
Even conditioning on a forecaster updating a forecast, inat-
tentive forecasters tend to report more accurately following

9These results are robust to how we treat nonresponses—that is, if we fill
in missing data with the previous month’s data for a forecaster who missed
a month’s forecast or if we just exclude that month.
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FIGURE 2.—PERSISTENCE IN FORECASTS

In the top panel, the vertical axis represents the share of eligible months that a given forecaster reported a forecast for in year t − 1. The horizontal axis represents the share of eligible months that a given forecaster
reported a forecast for in year t . Mean values of horizontal bins are plotted (each bin represents an increment of one month out of twelve months). Thus, a point on the 45-degree line means that, on average, forecasters
in that group reported forecasts at the same frequency as the previous year. In the bottom panel, the vertical axis represents the share of eligible months where a given forecaster changed a forecast from the previous
month in year t − 1. The horizontal axis represents the share of eligible months where a given forecaster changed the forecast from the previous month in year t . Mean values of horizontal bins are plotted (each bin
represents an increment of one month out of twelve months). Plotted points are scaled by the number of forecasters in each bin.

a natural disaster than when changing their forecast without
a disaster.

The magnitudes of these effects can be fairly large. For
instance, for the least attentive quintile, the impact of the
median disaster on accuracy is equivalent to the impact of
being one month closer to the period the forecast is relevant
for (e.g., making a forecast four months in advance rather than

five months in advance). For a disaster in the top decile of
newsworthiness, the effect is equivalent to being almost four
months nearer to the relevant period (e.g., making a forecast
four months in advance rather than eight months in advance).

Overall, these results suggest that disasters induce inatten-
tive agents to update their forecasts and, in doing so, actually
move them closer to the mean forecast and also to the ex
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TABLE 4.—INDIVIDUAL FORECAST CHANGES AND DISASTERS

(1) (2) (3) (4)
Variables Change Change Change Change

Disaster 0.00857 0.00192 0.0311**

(0.00872) (0.00631) (0.0143)
Scaled Disaster 0.00576** 0.0157**

(0.00283) (0.00617)
Disaster × Attentive Quintile −0.00842**

(0.00371)
Scaled Disaster × Attentive Quintile −0.00401***

(0.00150)
Observations 292,391 292,391 292,391 292,391
R2 0.149 0.149 0.140 0.140
Time FE Yes Yes Yes Yes
VAR FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Forecaster FE Yes Yes Yes Yes

Standard errors in parentheses: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. “Attentive Quintile” refers to the quintile of attentiveness a forecaster belongs to in terms of fraction of new forecasts that forecaster has
reported during his or her tenure. “Disaster” is an indicator variable for a disaster occurring in a particular country-month for over 1,000 natural disasters in the sample. “Scaled Disaster” refers to the ratio of news
articles written about a country in the five days following a disaster to those written in the five days before a disaster (has a mean of 1 and a maximum value of 6). “Change” is an indicator variable for whether that
forecaster changed the forecast from the previous month for that country-variable. Data cover 280 forecasters and seven countries for GDP, CPI, consumption, short- and long-run interest rates, unemployment, wages,
and producer prices. Standard errors are Driscoll-Kraay robust errors.

TABLE 5.—DISPERSION AND ACCURACY FOLLOWING DISASTERS

(1) (2) (3) (4)
Variables Distance from Mean Forecast Distance from Mean Forecast Distance from Actual Distance from Actual

Scaled Disaster −0.0109* −0.0136* −0.657** −0.675*

(0.00586) (0.00589) (0.275) (0.360)
Scaled Disaster × Attentive Quintile 0.00351 0.00441* 0.139** 0.146**

(0.00251) (0.00253) (0.0491) (0.0447)
Changed Forecast −0.102*** −1.341**

(0.0130) (0.551)
Observations 292,335 292,335 156,686 156,686
R2 0.056 0.057 0.101 0.102
Time FE Yes Yes Yes Yes
VAR FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Forecaster FE Yes Yes Yes Yes

Standard errors in parentheses: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. “Attentive Quintile” refers to the quintile of attentiveness a forecaster belongs to in terms of fraction of new forecasts that the forecaster has
reported during his or her tenure. “Scaled Disaster” refers to the ratio of news articles written about a country in the five days following a disaster to those written in the five days before a disaster (has a mean of 1 and
a maximum value of 6). “Changed Forecast” is an indicator variable for whether that forecaster changed the forecast from the previous month for that country-variable. Columns 1 and 2 use the squared distance from
the mean monthly forecast (excluding a forecaster’s own forecast) as the dependent variable. Columns 3 and 4 use the squared distance from the true (ex post) value of the forecast variable in question as the dependent
variable. Data cover 280 forecasters and seven countries for GDP, CPI, consumption, short- and long-run interest rates, unemployment, wages, and producer prices in columns 1 and 2. Columns 3 and 4 include only
data for GDP, CPI, consumption, and unemployment. Standard errors are Driscoll-Kraay robust errors.

post true value of the variable. Given the limited economic
impact of most of the disasters in our sample, it is likely that
for inattentive agents, natural disasters act mainly as an at-
tention shock, prompting them to update outdated forecasts
and converge toward a newer consensus value. To rationalize
the empirical results, we develop a framework aimed at ex-
plaining the expectations formation process following natural
disasters. In the next section, we introduce the information
structure that agents face and derive the state-space represen-
tation. In section V, we explore some of the key properties
of both types of agents, such as their information rigidity,
forecast accuracy, and dispersion.

IV. Information Structure and State Space

A. Information Structure

We suppose that economic agents seek to forecast an
m-dimensional signal process {πt } that is obfuscated by

noise. We envision the existence of both a public and a private
channel for all agents.

Our model assumes that the ith agent (1 ≤ i ≤ N) observes
the signal through the public channel contaminated by a com-
mon noise {ηt }, whereas the private channel provides the
signal contaminated by private noise. The public noise {ηt }
is heteroskedastic and subject to potential first- and second-
moment shocks. The public observation grid is described by
a matrix B, which has m columns. Hence, the costless public
data can be written as B πt + ηt .

Private information is manifested through an observation
grid A, a matrix of the same size as B; here, it will be m × m–
dimensional. One unit of private information consists of the
signal contaminated by private noise, which is denoted νt ,
and hence A πt + νt would be observed. However, the agent
has the option to purchase � units of private information,
which consists of � i.i.d. replications of νt , denoted by ν

(�)
t .

(Although � depends on t , we suppress this in the notation.)
Then letting A(�) = ι� ⊗ Im, where ι� is a vector of � ones,
the total private data received are A(�) πt + ν

(�)
t . Hence the
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overall data received, consisting of private and public por-
tions, are

y(�)
t =

[
A(�)

B

]
πt +

[
ν

(�)
t

ηt

]
. (2)

This notation makes the dependence on � explicit, although it
also depends on the profile of agent i. In fact, the next section
describes how at each time t , an agent makes a selection of �,
based on preference for forecast accuracy and shocks in the
economy.

Henceforth, we make the following assumptions about the
processes. We suppose that {πt } follows a stationary VAR(p)
stochastic process of dimension m,

πt = �1πt−1 + �2πt−2 + · · · + �pπt−p + ut , (3)

where p is taken sufficiently large to approximate a generic
signal. These can be generated at random using the bijective
reparameterization of the stable VAR(p) class provided in
Roy, McElroy, and Linton (2019).

The m-dimensional process {ηt } is serially uncorrelated
with a stochastic covariance matrix �t . This assumption is
designed to reflect changing uncertainty surrounding the sig-
nal, corresponding to epochs of heightened volatility follow-
ing large shocks. The marginal distributions are Gaussian,
except when there is a shock (see below). Each unit of pri-
vate noise is an m-dimensional Gaussian process that is seri-
ally uncorrelated with covariance matrix �ν, a deterministic
matrix particular to agent i. (We allow for each agent to have
somewhat different sources of private information, and there-
fore �ν can depend on i.) Hence, the � m-dimensional Gaus-
sian process {ν(�)

t } is serially uncorrelated with covariance
matrix I� ⊗ �ν. Finally, we assume that private information
is independent across agents.

Regarding the dynamics about the variance of public sig-
nal, �t , there is literature on its specification using stochastic
volatility processes (see, e.g., Chiu, Leonard, & Tsui, 1996,
and Uhlig, 1997). We adopt the broad framework of Cogley
and Sargent (2005) and Primiceri (2005), but with some mod-
ifications suggested by Neusser (2016). Specifically, consider
the Cholesky decomposition �t = Bt �t B′

t , where Bt is a unit
lower triangular and �t is diagonal. Each of the diagonal en-
tries of �t is assumed to follow an exponential random walk.
The matrix Bt can be written as the matrix exponential of
some Ct , where Ct is lower triangular with 0s on the diagonal.
Each element of Ct is modeled as following an independent
random walk, and Bt = exp{Ct }. In this way, the process {�t }
can be generated.

To generate a temporary shock, we consider both first-
and second-moment effects. The first-moment facet corre-
sponds to a jump (up or down) in the value of the public data,
whereas the second-moment facet corresponds to increased
variability in the public data; both effects occur in the public
noise, which is heteroskedastic, while we model the signal

as being unchanged. (This reflects a view that the signal cor-
responds to the dynamics of a variable apart from temporary
aberrations.)

The second-moment effect of a temporary shock at some
time index τ can be generated by scaling the diagonal entries
of a single �t by some a > 0, but without altering Bt or �t ,
so that the effect is transitory:

�t = Bt �t B′
t × (1 + a 1{t=τ}). (4)

This ensures that �τ has values multiplied by 1 + a. How-
ever, the corresponding shock ητ will not be large unless the
random vector is generated from the right tail of the normal
distribution. We proceed by generating m random variables
independently from the marginal distribution P [Z > x|Z >

b] = (1 − �(x))/(1 − �(b)), and multiplying the corre-
sponding vector by �

1/2
τ to obtain ητ, thereby obtaining a

first-moment shock. These modifications to ηt and �t at time
t = τ will be designated as a temporary shock, mimicking the
first-moment and second-moment shock arising from natural
disasters. In our simulations, we simulate a large shock with
parameters a = 19 and b = 2.

B. State-Space Representation

We here give details about the Kalman filter for process-
ing noisy information, assuming that �t and the parameters
governing {πt } are known. Likewise, the matrices B and A(�)

are also assumed to be known. In practice, the dynamics of
these processes would not be known to the forecasters. In-
stead, our viewpoint is that the state-space model reflects the
essential facets of each agent’s internal process for generating
forecasts.

Suppose that the signal can be expressed as a component
of a pm-dimensional Markovian state vector xt , that is, there
exists a matrix G such that πt = G xt . (Here, p gives the
number of states, each of which has dimension m and G is
of dimension m × pm.) The transition equation for this state
vector is

xt = � xt−1 + εt (5)

for t ≥ 1 and an initial value x0. Here, x′
t = [π′

t , π
′
t−1, . . . ,

π′
t−p+1], G = [Im, 0, . . .], and

� =

⎡⎢⎢⎢⎣
�1 �2 . . . �p

Im 0 . . . 0
...

. . .
...

...

0 . . . Im 0

⎤⎥⎥⎥⎦ .

The transition matrix, �, has eigenvalues less than 1 in ab-
solute value by assumption. The signal innovations {εt } are
assumed to be uncorrelated with x0, so that εt is uncorrelated
with xt−1 for t ≥ 1. The innovations’ common covariance
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matrix is denoted as �ε . Let

δt (�) =
[

ν
(�)
t

ηt

]
, H (�) =

[
A(�)

B

]
G,

so that combining equation (2) with πt = G xt yields the ob-
servation equation:

yt (�) = H (�) xt + δt (�). (6)

Evidently, {δt (�)} is heteroskedastic white noise, with covari-
ance matrix St given by

St = Var[δt (�)] =
[

I� ⊗ �ν 0

0 �t

]
. (7)

Together, equations (6) and (5) describe the information
structure in state-space form. For ease of notation, we sup-
press the dependence on �.

We define the following quantities: the forecast of the state
vector is x̂t+1|t = E[xt+1|y1, . . . , yt ], and its mean squared er-
ror matrix is Pt+1|t = Var[xt+1 − x̂t+1|t ]. The residual is the
data minus its forecast, namely, et = yt − ŷt |t−1, and its mean
squared error matrix is denotedVt . The Kalman gain is by def-
inition Kt = Cov[xt+1, et ] Var[et ]−1 and plays a key role in
updating a signal extraction estimate given new information.
Initialization of the recursive Kalman filter algorithm is given
by x̂1|0 = 0 and P1|0 = Var[x1], which are the correct quanti-
ties given a stationary state vector. In the case of a VAR(p)
signal process, this initial variance can be computed directly
from the companion form. Then for 1 ≤ t ≤ T , we compute

et = yt − H x̂t |t−1, (8)

Vt = H Pt |t−1 H ′ + St , (9)

Kt = � Pt |t−1 H ′ V −1
t , (10)

x̂t+1|t = � x̂t |t−1 + Kt et , (11)

Pt+1|t = (� − Kt H ) Pt |t−1 �′ + G′ �ε G. (12)

As an additional step, because the signal is a linear function
of the state vector, we have

π̂t+1|t = G x̂t+1|t , (13)

Var[π̂t+1|t − πt+1] = G Pt+1|t G′. (14)

Equation (10) gives a recursive formula for the Kalman
gain, and its dependence on the heteroskedastic noise is
clearly given through Vt in equation (9). Moreover, equations
(11) and (12) tell us how to update our one-step-ahead pre-
diction and forecast error variance for the state vector. Again,
because the Kalman gain depends on the heteroskedastic vari-
ance �t , both the state vector forecast and its uncertainty will
be affected. To understand the Kalman gain better, observe
that

x̂t |t = x̂t |t−1 + Pt |t−1 H ′ V −1
t et , (15)

which follows by applying �−1 to equation (11); hence,
�−1 Kt tells us the factor to multiply the new information
et in order to update x̂t |t−1 to the revised quantity x̂t |t . Rear-
ranging this relationship and using equation (13) yields

π̂t+1|t+1 =
(

Im − G �−1 Kt+1

[
A(�)

B

])
π̂t+1|t

+ G �−1 Kt+1 yt+1. (16)

This can be compared with expressions in Coibion and
Gorodnichenko (2012), which focused on the homoskedastic
case. Formally, the signal seems to depend on past forecasts
and new information in the same way; however, the Kalman
gain is different from the homoskedastic case. We illustrate
this difference below.

C. Information Rigidity

Extending the formulation of Coibion and Gorodnichenko
(2012) for the homoskedastic public noise, equation (16) in-
dicates that the old forecast π̂t+1|t is scaled by Im − Rt , where

Rt = G �−1 Kt+1

[
A(�)

B

]
. (17)

Note that Rt is m × m–dimensional. When the Kalman gain
is small, little modification to the old forecast is needed. From
equations (9) and (10), clearly Kt is small when St is large;
a sudden jump in �t (irrespective of �) will drive up Vt and
thereby decrease Rt . In other words, shocks will have the
effect that new information is received with high uncertainty,
as the forecaster knows there is little signal content in the
noisy data. As a result, the new forecast will closely resemble
the previous period’s forecast.

Formally, the information rigidity, defined as the sequence

rt = tr [Im − Rt ]/m, (18)

is high when the new data are deemed untrustworthy (i.e.,
when �t is high). Note that Im − Rt scales the old forecast
π̂t+1|t in equation (16), and this part of the equation can be
expressed as λ π̂t+1|t when the old forecast is an eigenvec-
tor of Im − Rt with eigenvalue λ. Hence, we might interpret
the eigenvalues as the degree of information acquisition, and
therefore the trace (which is the sum of the eigenvalues) di-
vided by m yields the average degree of information acqui-
sition. Other measures are possible, such as the product of
the eigenvalues, or det[Im − Rt ], which in analogy with the
forecasting literature may be described as a total degree of
information acquisition. We have explored in simulation the
properties of the total information, and its behavior is similar
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to that of the average information rt ; we focus on the latter
for the remainder of the paper.

Our measure in equation (18) represents the average degree
of information rigidity when predicting many variables. This
definition is in line with the empirical evidence in Coibion
and Gorodnichenko (2015) that forecast revisions of other
variables have little predictive power for the forecast errors
of each variable, that is, the absence of statistical evidence for
the importance of off-diagonal elements of the matrix Im − Rt

in our context.
We emphasize three features of this definition. First, in-

formation rigidity is defined in a multivariate context. This
is important because imperfect information theories of the
business cycle typically require the existence of inattention
for consumers, firms, and workers, not their inattention to a
single variable, such as inflation. Second, information rigid-
ity is allowed to differ across agents to reflect differences in
the weight attached on prior beliefs (e.g., Lahiri & Sheng,
2008). Third, information rigidity is allowed to change over
time in response to the increased uncertainty due to large
shocks (e.g., Bloom, 2009).

V. A Framework for Expectation Formation

A. Agent Preference and Loss Function

Our framework depends on the cost of private information,
the preference of each agent for forecasting accuracy, and the
impact of a shock. As indicated by our empirical findings,
there are two types of forecasters, attentive and inattentive,
who are not interchangeable and correspond to different fore-
casting profiles. We suppose that each agent has an associated
β coefficient, a positive number that governs the importance
of forecast error to the agent. This is essentially the same as
the marginal benefit of reducing forecast MSE, as described
in Giacomini et al. (2017).

A unit of private information costs α, so that � units incur a
total cost of α�. The agent’s forecast MSE at time t depends
on the number of units of private information and is denoted
Mt (�); it is computed via G Pt+1|t G′ at time t , using equation
(12). Note that equation (13) implicitly relies on �, the num-
ber of units purchased. In the special case that m = 1 and the
signal is an AR(1) with G = 1 (and with A and B equal to 1),
we can show that Mt (�) is decreasing with � and increasing
in σ2

t .10 More generally, for m > 1, we must study a scalar
measure of Mt (�), such as the trace. Such a measure is weakly
decreasing in � as the conditioning set is increased, and the
lower bound of 0 indicates that Mt (�) is convex. Thus, as an
agent purchases more private information, his MSE will de-
crease. But as he purchases each additional piece, the decline
in his MSE becomes smaller.

The total cost to an agent at time t who has purchased �

units of private information is

10To save space, the illustration of this special case is omitted here.

Ct (�) = β tr[Mt (�)] + α �. (19)

Therefore, a decrease to tr[Mt (�)] that resulted from increases
to � will be offset with the increased cost α �. Each agent
endeavors to minimize the cost function, but that person’s
behavior depends on β, which is different for each agent.
Low values of β correspond to indifference to forecast per-
formance, and such agents are said to be inattentive. At the
extreme end, β = 0 indicates that forecast performance is ir-
relevant to the agent, and private information will never be
purchased. The other extreme corresponds to β = ∞, where
forecast performance is of crucial importance; then the cost
is minimized by taking � as large as possible. Hence, higher
values of β correspond to attentive agents.11 While we as-
sume heterogeneity in gains and keep the cost parameter the
same across agents, this simplified assumption is not central
to the results. Indeed, all we can identify in the data is the
heterogeneity in the ratio of benefit to cost. Thus, β can be
interpreted as “normalized gain parameter.”

The forecasting process is described as follows. At time t ,
all agents observe the costless public data. They also observe
whether there has been a shock, which has first- and second-
moment aspects. The agent’s internal decision-making and
forecasting process is modeled through the state-space form,
where forecasts and MSE are computed according to assump-
tions about the public noise. The agent computes Ct (�) for
all 0 ≤ � ≤ L and chooses �� (integer valued), which mini-
mizes cost. Clearly this minimizing choice can be different
at each time t . The agent then purchases �� units of private
information and generates the corresponding forecasts.

This entire process might be expected to evolve smoothly
over times t , with 1 ≤ t ≤ T , when no shocks are present.
Attentive agents are buying a few units of private informa-
tion, and this quantity would plausibly be roughly constant
over time. In contrast, inattentive agents buy little, or even
no, private information. This scenario is interrupted by the
occurrence of a shock (at time t), because MSE (tr[Mt (�)])
increases, thereby increasingCt (�). By increasing �, the agent
can reduce tr[Mt (�)], and whether this is worthwhile is de-
termined by the offset of the cost α �.

If the shock is sufficiently dramatic, inattentive agents will
be moved to purchase some private information, and their
resulting tr[Mt (��)] will be lower than it would be otherwise.
Whether it is lower than its value at time t − 1 depends on
whether the shock’s effect on forecast error is offset by the
purchase of private information. The attentive agent might
also purchase information; however, because tr[Mt (�)] is con-
vex, there is a diminishing return obtained by getting more
private information. As a result, it may not be worthwhile for
the attentive agent to purchase even more information when
the shock occurs.

11We suppose there is some upper-bound L on the quantity of private
information that can be purchased; in our simulations, we have set L = 20,
although this has no impact because the maximum threshold is not attained
by any agent.
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B. Assessing Forecasting Performance

From the preceding mechanism, each agent i generates a
set of forecasts π̂t+1|t (i). This depends, for each t , on ��,
which in turn depends on the cost profile of agent i through
βi and the variability of private information �ν. The forecast
and its error covariance G Pt+1|t (i) G′ can be computed from
equations (13) and (14). If we have interest in some linear
composite of agents’ results, say

∑N
i=1 wiπ̂t+1|t (i) for given

weights wi, then the corresponding target is
∑N

i=1 wiπt+1,
which equals πt+1 when the weights sum to 1. This composite
is called the consensus forecast when the weights all equal
1/N :

πt |t−1 = N−1
N∑

i=1

π̂t |t−1(i). (20)

Other quantities of interest are:

π̂t |t−1(i) − πt : Forecast error of agent i

πt |t−1 − πt : Error of consensus forecast

π̂t |t−1(i) − πt |t−1: Discrepancy of agent i from
consensus forecast

We note that the forecast error of agent i is orthogonal to the
public data and their own private data. The mean square of the
forecast error of agent i is identified with the quantity Mt (�)
above, but here it is convenient to denote it by Mi instead, as
we are fixing the time index for this discussion and wish to
stress the dependence on agent i. As each agent has forecast
MSE of Mi, we can get an average measure via

M̃ = N−1
N∑

i=1

Mi. (21)

In order to compute the mean square error of equation (20),
the consensus forecast MSE Mt+1|t , it is necessary to calculate
forecast error covariances Cov[̂xt+1|t ( j) − xt+1, x̂t+1|t (k) −
xt+1], denoted Q( jk)

t+1|t . For j = k, this covariance is just Pt+1|t .
Otherwise, the following recursion can be used for computa-
tion. Note that the Kalman gains Kt ( j) and observation ma-
trices H ( j) depend on the jth Kalman filter calculation and
that such an index j in turn determines the �� needed in the
formulas.
Proposition 1. The covariance of prediction errors across
agents, Q( jk)

t+1|t , can be computed recursively by

Q( jk)
t+1|t = [� − Kt ( j) H ( j)] Q( jk)

t |t−1[� − Kt (k) H (k)]′

+ �ε + Kt ( j)

[
0 0

0 �t

]
Kt (k)′, (22)

with the initialization Q( jk)
1|0 = Var[x1] for all j and k.

Proof. See the online appendix.

We can now determine the consensus forecast MSE.
Letting

Cjk = Cov[π̂t+1|t ( j) − πt+1, π̂t+1|t (k) − πt+1],

it follows that Cjk = G Q( jk)
t+1|t G′. Hence, because πt+1|t −

πt+1 = N−1 ∑N
i=1(π̂t+1|t (i) − πt+1), we obtain

Mt+1|t = N−2
N∑

j,k=1

Cjk. (23)

Next, the mean square of the discrepancy of agent i is denoted
Di. It is a measure of disagreement for agent i versus the
consensus and will be small if that agent behaves like her
cohort. To compute the disagreement, observe that

π̂t+1|t (i) − πt+1|t = (π̂t+1|t (i) − πt+1)

− N−1
N∑

j=1

(π̂t+1|t ( j) − πt+1)

= (1 − N−1) (π̂t+1|t (i) − πt+1)

− N−1
∑
j �=i

(π̂t+1|t ( j) − πt+1),

and hence with w̃ j = −1/N for j �= i and w̃i = 1 − 1/N , we
have Di = ∑N

j,k=1 w̃ j w̃k Cjk. The average disagreement, or
dispersion, is defined via

D̃ = N−1
N∑

i=1

Di. (24)

C. Summary of Model Implications

To summarize, we propose a model of information ac-
quisition in which all agents behave the same way but are
different in the benefit that they gain from the accuracy of
their beliefs. The marginal benefit from a revision (compared
to the marginal cost) is much larger for attentive agents with
higher gain parameters. Within this model, disaster shocks are
specified in the same way for all agents as an increase in the
variance of the public signal. To compensate for this higher
uncertainty, both inattentive and (some) attentive agents will
increase their acquisition of private information, leading to
declined information rigidity after large shocks. Inattentive
agents buy a lot of private information after a disaster shock
because it is cheaper for a more uninformed agent to know
more about the fundamental relative to an agent who already
knows a lot. For attentive agents, however, this acquisition is
worthwhile only if the benefit of doing so—the reduction of
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the mean squared error—is larger than the cost from buying
additional pieces of private information.

In particular, our model generates the following implica-
tions for the MSE and information rigidity (IR):

• For attentive agents (highβ): Normally their forecast MSE
Mi and IR is low. When a shock occurs, there may be a
slight increase to both (if they forgo buying additional pri-
vate information) or a slight decrease to both (this happens
if they purchase additional private information, which can
offset the shock’s impact on MSE). If the shock is more
moderate, they are unlikely to alter their behavior.

• For inattentive agents (low β): Normally their forecast
MSE and IR is high. When a shock occurs, they usu-
ally purchase some private information, and it is typically
more than sufficient to offset the impact of the shock,
hence, forecast MSE and IR will decrease. They tend to
react even to more moderate shocks.

The consensus forecast MSE is a mixture of the forecast
MSEs of individual agents, and, hence, its overall behav-
ior depends on the correlation of forecast errors for various
agents, some of whom may be purchasing additional private
information. It is therefore related to disagreement. In partic-
ular, for disagreement our model predicts:

• For attentive agents (high β): If they do not purchase pri-
vate information, disagreement is moderate and increases
slightly during a shock, while the correlation of their fore-
cast errors decreases. If they do purchase private infor-
mation during the shock, the disagreement will decrease
while forecast errors become more correlated.

• For inattentive agents (low β): The disagreement is high
initially, and drops during the shock (because they pur-
chase information). Also, forecast errors become more
correlated. For an individual agent i who does not pur-
chase information and defies the consensus, Di can in-
crease, but the overall measure D̃ will tend to decrease.

D. Simulation Results

We illustrate the above model implications through the re-
sults of simulations. Our data-generating process (DGP) is
described as follows. We set m = 3, and for the signal con-
sidered, a VAR(2) based on empirical fits of industrial pro-
duction, inflation, and federal funds rate data. This is merely
intended to furnish a reasonable signal DGP. The coefficients
are

�1 =

⎡⎢⎣0.7745 −0.1472 −0.4292

0.0556 0.3139 0.1116

0.1066 0.0582 1.3309

⎤⎥⎦

�2 =

⎡⎢⎣−0.0517 0.0979 0.4708

0.0170 0.1813 −0.0151

−0.0054 0.0384 −0.3872

⎤⎥⎦ .

The innovation covariance was set to I3. Samples of size
T = 100 were generated, with a burn-in period of 500 obser-
vations. The observation matrices A and B were set equal to
identity matrices I3. To generate the public noise �t , the in-
novations of the exponential random walk �t and the matrix
exponential Ct were Gaussian of standard deviation .01 for
all three dimensions. A temporary shock at time τ = 50 was
generated in the manner described in equation (4).

To generate the private noise, an overall dispersion coef-
ficient with value .001 controls the spread of entries in the
covariance matrix, whereas the overall scale is determined
via multiplication by .1. This low value makes private in-
formation more valuable. The settings were determined by
empirically examining various cases and studying the result-
ing behavior of simulations. The number of agents was set
to N = 10, and two different profiles were considered. For
inattentive agents, we drew β uniform on [9, 10], whereas
for attentive agents, β was uniform on [45, 55]. The cost of
private information is α = 1.

We generate a large shock with parameters a = 19 and
b = 2 as described in section IVA. The simulation results are
shown in figure 3 for information rigidity, figure 4 for mean
squared error, and figure 5 for forecast disagreement.12

We first examine the behavior of inattentive agents in the
scenario of this large shock. The shock is so large that all the
agents buy information, moving from one unit to two units
uniformly. As a result, individual and aggregate measure of
MSE and disagreement are in concordance (figures 4 and 5),
uniformly dipping down at the shock and then reverting to
former levels. Agents 3 and 10 continue to buy two units
of information for some time after the shock, reverting to
stingier behavior only at time points 60 and 59, respectively.

The impact of this behavior can be seen in the aggregate
plots of MSE and disagreement (figures 4 and 5). Also, the
behavior of M3 and M10 (as well as D3 and D10) shows a
sustained plunge at the time of the shock, and for several
times thereafter, followed by a return to former levels of MSE
and disagreement. Information rigidity (figure 3) begins at
a moderate level (high relative to attentive forecasters) and
dips considerably during the shock, also displaying the same
effects due to agents 3 and 10 immediately afterward.

Next, we consider the impact of this large shock on the at-
tentive agents. These forecasters are more conservative with
regard to shocks, and half of them (agents 1 through 5) pur-
chase additional information, again moving from three to four
units; the other five agents make no adjustment to their strat-
egy during this very large shock. As a result, the behavior

12We describe and simulate the impacts of moderate shocks in the online
appendix. We find qualitatively similar results, though of somewhat reduced
magnitude.
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FIGURE 3.—INFORMATION RIGIDITY FOLLOWING A LARGE SHOCK

The average degree of information rigidity in predicting three variables in the context of a large shock is displayed, calculated as the scaled trace of the matrix of the weights attached to the agent’s previous forecast
relative to new information as in equation (18). The left panel shows results for inattentive agents, while the right panel shows results for attentive agents. The shock time τ = 50 is indicated by a vertical dashed line.

FIGURE 4.—MEAN SQUARED ERROR FOLLOWING A LARGE SHOCK

These plots show the average mean squared error (MSE) for inattentive (dotted line) and attentive (solid line) agents in the presence of a large shock. The first, second, and third rows plot the MSE in predicting industrial
production, inflation, and federal funds rate, respectively. The MSE M̃ is calculated according to equation (21). The shock time τ = 50 is indicated by a vertical dashed line.
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FIGURE 5.—FORECAST DISAGREEMENT FOLLOWING A LARGE SHOCK

These plots show forecast disagreement among inattentive (dotted line) and attentive (solid line) agents in the presence of a large shock. The first, second, and third rows plot the disagreement in predicting industrial
production, inflation, and federal funds rate, respectively. Disagreement D̃ is calculated according to equation (24). The shock time τ = 50 is indicated by a vertical dashed line.

of M1 through M5, as well as D1 through D5, exhibits a
downward movement during the shock; the opposite behavior
occurs for the nonpurchasing agents. Because they swiftly
revert to their former behavior after the shock, the effect on
information rigidity (figure 3) is to just generate a downward
drop at the time of the shock. The aggregate MSE M̃ (figure
4) and aggregate disagreement D̃ (figure 5) display the same
features.

We need to point out that the effect of a large, unexpected
shock on overall (including both attentive and inattentive
agents) mean squared error and disagreement depends on
the size of the shock, agents’ preference for forecast accu-
racy, and the proportion of inattentive agents. Our empirical
results show that inattentive agents tend to dominate, and
thus, overall mean squared error and disagreement decline
following large, unexpected shocks (at least given that the
uncertainty component of the shock is not sufficiently large
to outweigh the effects on the inattentive agents). Our model,
however, has rich implications for different paths of overall
mean squared error and disagreement following shocks.

VI. Conclusion

This paper provides a new view on what drives the behav-
ior of macroeconomic forecasters. We find that individual
forecasters are persistently heterogeneous in how often they
revise or even issue a forecast. Given that many commonly
used macroeconomic forecasts are derived from the average
forecast from a selected set of forecasters, these differences
in the frequency of revision have the potential to bias average
forecasts and change the dynamics of forecasts. Accounting
for this heterogeneity helps explain the information rigidity
observed in many commonly utilized macroeconomic fore-
casts and gives a reason why forecast dispersion may actu-
ally decline following a large shock that increases uncertainty
about future economic performance.

We demonstrate a significant degree of information
rigidity in forecasts, driven by the fact that many forecast-
ers choose not to update their forecast in successive time
periods. Matching forecasts from a panel of 54 countries to a
detailed set of natural disasters, we show that this information
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rigidity declines significantly following natural disasters. At
an individual level, this effect seems consistent with an at-
tention shock affecting the forecasters, where newsworthy
disasters induce formerly inattentive forecasters to update
their forecasts. This may result in a counterintuitive result,
where shocks to countries can increase uncertainty but de-
crease forecaster dispersion.

We model this phenomenon with a learning model that
incorporates both an attention effect and an uncertainty ef-
fect. Our theory has three key elements. First, agents are
not interchangeable. Attentive agents have a larger benefit
from forecast accuracy and revise forecasts frequently. Inat-
tentive agents who do not benefit much from the accuracy of
their forecasts make revisions infrequently and nonsystemati-
cally. Second, large and unexpected shocks induce inattentive
agents to update to a greater degree. Third, large shocks might
induce attentive agents to purchase more private information
and be more attentive.

Our model explains a world in which large shocks like
natural disasters induce an immediate increase in updating of
information for inattentive agents (extensive margin). This
attention effect is particularly pronounced for those with an
outdated information set, resulting in a significant decline
in information rigidity. To compensate for the higher uncer-
tainty following shocks, some attentive agents increase their
acquisition of private information (intensive margin). These
findings warn against treating the degree of information rigid-
ity as a structural parameter and suggest that future research
should explore state dependence in the information updating
process. To this end, our paper moves one step forward by
introducing time-varying uncertainty in expectations forma-
tion framework and proposing a measure of state-dependent
information rigidity in response to uncertainty.
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